Krasinkiewicz Spaces and Parametric Krasinkiewicz Maps

نویسنده

  • EIICHI MATSUHASHI
چکیده

We say that a metrizable space M is a Krasinkiewicz space if any map from a metrizable compactum X into M can be approximated by Krasinkiewicz maps (a map g : X → M is Krasinkiewicz provided every continuum in X is either contained in a fiber of g or contains a component of a fiber of g). In this paper we establish the following property of Krasinkiewicz spaces: Let f : X → Y be a perfect map between metrizable spaces and M a Krasinkiewicz complete ANR-space. If Y is a countable union of closed finite-dimensional subsets, then the function space C(X, M) with the source limitation topology contains a dense Gδ-subset of maps g such that all restrictions g|f(y), y ∈ Y , are Krasinkiewicz maps. The same conclusion remains true if M is homeomorphic to a closed convex subset of a Banach space and X is a C-space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Bing and Krasinkiewicz Maps: Revisited

Let M be a complete metric ANR-space such that for any metric compactum K the function space C(K,M) contains a dense set of Bing (resp., Krasinkiewicz) maps. It is shown that M has the following property: If f : X → Y is a perfect surjection between metric spaces, then C(X,M) with the source limitation topology contains a dense Gδ-subset of maps g such that all restrictions g|f(y), y ∈ Y , are ...

متن کامل

Countable Connected Hausdorff and Urysohn Bunches of Arcs in the Plane

In this paper, we answer a question by Krasinkiewicz, Reńska and Sobolewski by constructing countable connected Hausdorff and Urysohn spaces as quotient spaces of bunches of arcs in the plane. We also consider a generalization of graphs by allowing vertices to be continua and replacing edges by not necessarily connected sets. We require only that two “vertices” be in the same quasi-component of...

متن کامل

Pseudoarcs, Pseudocircles, Lakes of Wada and Generic Maps on S

We prove a Bruckner-Garg type theorem for the fiber structure of a generic map from a continuum X into the unit interval I. We also study the specific case of X = S2. We show that each nondegenerate component of each fiber of a generic map in C(S2, I) is figure-eight-like. This together with a result by Krasinkiewicz and Levin gives that each nondegenerate component of each fiber of a generic m...

متن کامل

Mapping Chainable Continua onto Dendroids

We prove that every chainable continuum can be mapped into a dendroid such that all point-inverses consist of at most three points. In particular, it follows that there exists a finite-to-one map from a hereditarily indecomposable continuum (the pseudoarc) onto hereditarily decomposable continuum. This answers a question by J. Krasinkiewicz.

متن کامل

Extension of the Borsuk Theorem on Non-embeddability of Spheres

It is proved that the suspension P M of a closed n-dimensional manifold M , n ≥ 1, does not embed in a product of n + 1 curves. In fact, the ultimate result will be proved in a much more general setting. This is a far-reaching generalization the Borsuk theorem on non-embeddability of the sphere Sn+1 in a product of n + 1 curves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008